A Stochastic Portfolio Optimization Model with Complete Memory
نویسندگان
چکیده
In this paper we consider a portfolio optimization problem of the Merton’s type with complete memory over a finite time horizon. The problem is formulated as a stochastic control problem on a finite time horizon and the state evolves according to a process governed by a stochastic process with memory. The goal is to choose investment and consumption controls such that the total expected discounted utility is maximized. Under certain conditions, we derive the explicit solutions for the associated Hamilton-Jacobi-Bellman (HJB) equations in a finite dimensional space for exponential, logarithmic and power utility functions. For those utility functions, verification results are established to ensure that the solutions are equal to the value functions, and the optimal controls are derived, too.
منابع مشابه
Introducing a Relational Network DEA Model with Stochastic Intermediate measures for Portfolio Optimization
متن کامل
Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملMulti-period project portfolio selection under risk considerations and stochastic income
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, con...
متن کاملAn extension of stochastic differential models by using the Grunwald-Letnikov fractional derivative
Stochastic differential equations (SDEs) have been applied by engineers and economists because it can express the behavior of stochastic processes in compact expressions. In this paper, by using Grunwald-Letnikov fractional derivative, the stochastic differential model is improved. Two numerical examples are presented to show efficiency of the proposed model. A numerical optimization approach b...
متن کاملAn Application of Functional Ito's Formula to Stochastic Portfolio Optimization with Bounded Memory
We consider a stochastic portfolio optimization model in which the returns of risky asset depend on its past performance. The price of the risky asset is described by a stochastic delay differential equation. The investor’s goal is to maximize the expected discounted utility by choosing optimal investment and consumption as controls. We use the functional Ito’s formula to derive the associated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016